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Nomenclature
D = internal duct diameter, [= 2ri], m

f = friction factor, defined by Equation (13)
–
fk = eigen coefficient, defined by Equation 

(5.b)

h = internal fluid-wall heat transfer
coefficient, W/m2 K

k = thermal conductivity, W/m K

N = number of terms defining a series

Nk = norm of eigenvalue problem, defined 
by Equation (4.c)

Nu(Z) = local Nusselt number, defined by 
= Equation (11)

Nu∞ = thermally developed Nusselt number,
= defined by Equation (12)

Pr = Prandtl number, [= v/α]

Prt = turbulent Prandtl number,
= [= ∈ m/∈ h]

R = dimensionless normal co-ordinate, 
[= r/ri or 1 – y+/R+]

Re = Reynolds number, [= –uD/v]

R+ = dimensionless factor, [= 0.5Re

r = radial distance, m

ri = duct internal radius, m

T(r,z) = temperature within the fluid, K

Ti = reference fluid inlet temperature,
K

Tw = constant wall surface temperature,-
= K

T∞ = ambient temperature, K

U(R) = dimensionless velocity profile, defined
by Equation (2.a)

u(r) = velocity profile across the duct, 
m/s

–u = mean velocity of fluid, m/s

u+ = dimensionless turbulent velocity 
profile, defined by Equation (2.a)

W(R) = dimensionless coefficient, defined 
by Equation (2.b)

y+ = dimensionless distance from the 
wall, [= 0.5 (1 – R)Re

z = axial distance, m

Z = dimensionless axial distance, 
[= (D/ri)

2αz/(–uD2), or (z/D)/Pe]f / ]8

f / ]8
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Introduction
Studies of steady forced convective heat transfer inside circular ducts with fully
developed turbulent flow and constant wall surface temperature are of immense
technological importance, as they occur frequently under normal operating
conditions in a wide variety of heating and cooling devices. In such cases, when
compared with applications involving the constant wall heat flux boundary
condition, improved systems performance and ease of control are usually
reported. However, although the inherent advantages of turbulent forced
convective heat transfer are being exploited, there is no fundamental theory
available in the open literature to determine turbulent velocity distributions from
a purely theoretical approach. In general, empirical and/or semi-empirical models
are relied on to correlate turbulent velocity distributions inside ducts and
channels. In circular ducts, flow and heat transfer characteristics for the turbulent
regimes are being explored in great detail, as this geometry finds widespread use
in diverse applications, and for practical purposes, both flow and heat transfer
correlations that are derived for use with circular ducts are readily applicable with
reasonable accuracy to other geometries ducts, provided the hydraulic diameter
of the latter is appropriately substituted for the diameter of the former.

Recently, numerous researchers have reported findings detailing information
on both analytical[1-5] and experimental[5-7] studies of steady and unsteady
forced flows inside circular ducts and rectangular channels, within the laminar
and turbulent flow regimes under different types of boundary condition. In
some of the earlier works, the initial transients associated with unsteady flows
are neglected and quasi-steady approaches applied to approximate the thermal
response of the system under periodic disturbance, while in others, simplified
solutions were evaluated based on the assumption of slug flow velocity profiles.
Other attempts[5] have led to the solution of complex eigenvalue problems that
are not of the conventional Sturm-Liouville type, with the main tasks being
formulating solution techniques for evaluating the complex eigen quantities,
particularly in cases where time-dependent functions are not always eliminated
from the initial transient definitions.

In contrast to the foregone studies, this work provides new information on an
innovative analytical approach, utilizing ideas associated with the generalized
integral transform technique[5,8-10] to obtain benchmark results for quantities

Note: The symbols defined above are subject to alteration on occasion

Greek symbols

α = fluid thermal diffusivity, m2/s

∈ = absolute modulus of variation, %

∈ (R) = turbulent eddy viscosity, defined 
= by Equation (2.a), m2/s

ν = kinematic viscosity, m2/s

Θ(R,Z) = dimensionless fluid temperature,-
defined by Equations (2.a) and (7)

Θb(Z) = dimensionless fluid bulk temperature, 
defined by Equation (8)

µk = kth eigenvalue of Equation (3.a)

ψk = eigenfunction of kth eigenvalue,
defined by Equation (3)

Subscripts

b = bulk

f = fluid

h = heat

I = inlet

i,j,k = order of eigenquantities

m = momentum

t = turbulent

ts = theoretical solution 

w = wall

∞ = remote regions, i.e. infinity
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of practical interest in the accurate design of heat transfer devices employing a
circular duct geometry. The use and practical applicability in the analysis of
typical engineering problems is demonstrated by treating the case of
hydrodynamically developed steady forced convection inside a circular duct
with turbulent flow and constant wall surface temperature. In such an
application, the associated auxiliary eigenvalue problem for the thermal
response of the fluid will be analytically handled through the advanced sign-
count method[11] providing eigenquantities with a user-prescribed accuracy. For
the case here advanced, validation of the formulated approach will be sought
through critically comparing the analytically derived thermally developed
Nusselt numbers with those obtained from reliable empirical correlations[12-14]
using the latter as the basis of comparison. In such analyses, the maximum in
absolute differences are selected as accuracy indicators for predication, since
such norms are rather strict when compared to the norms of the root-mean-
squared residuals, thereby guaranteeing benchmark predicated results.

Practical applications of this work include, among others, an analytical tool
for the prediction of local and thermally developed heat transfer parameters, as
well as bulk, radial and axial temperature distributions within the fluid as it
progresses along the flow passage – which are critical parameters for the
accurate design of thermal energy conversion devices. In addition to circular
ducts, the analyses are readily applicable to other geometries and flow regimes
by appropriate transformations. The information presented here, based on their
benchmark nature, can serve as a fundamental source for comparing results of
new simulation techniques in heat transfer analysis.

Theoretical analysis
Steady forced convection with fully developed turbulent flow and constant
surface wall temperature is considered inside the thermal entry region of a
circular duct, wherein the turbulent velocity profile is established by a three-
layer distribution[15] and the eddy diffusivity by a two-layer algebraic
empirical model[16]. Along the thermal entrance region, the thermal response of
the flowing fluid is evaluated for the case where axial conduction, free
convection and viscous dissipation effects are neglected. Therefore, constant
fluid thermophysical properties, the energy equation relative to that region can
be written in dimensionless form as:

with boundary conditions given as:

and

(1.c)

(1.b)

(1.a)



Analysis of
steady forced

convection 

427

and inlet condition as:

while the dimensionless groups are defined as:

with ∈ m being eddy diffusivity of momentum[16] and u+ the three-layer
turbulent velocity distribution[15].

The integral transform method is a “well-known” classical approach in the
analytical solution of certain classes of linear transformable diffusion
problems[17-19]. The treatise, Mikhailov and Özis

5
i[11] compiles most of the

available work in the exact analysis of heat and mass diffusion, following the
ideas of integral transformation. During the last two decades, after the work of
Özis

5
i and Murray[19], this approach was progressively extended to allow for

approximate analytical solutions of a much wider range of a priori non-
transformable problems, as reviewed in different sources[8,20]. More recently,
however, this approach gained a hybrid analytical-numerical structure, offering
user control accuracy and quite efficient computational performance for a wide
variety of problems, some of which are classified and systematically arranged
with several applications[8], including the non-linear formulation of interest in
heat and fluid flow applications.

In the present work, manipulation of ideas associated with the generalized
integral transform technique allows the selection of an auxiliary eigenvalue
problem – which is a special case of the classical Sturm-Liouville system, as:

with boundary conditions:

and

wherein solutions of the related eigenvalues, µk′s, and eigenfunctions, yk′s(R),
are at this point assumed known, through application of the advanced sign-
count method[11], providing safe, guaranteed and automatic computation of as
many eigenquantities as desired with a user-prescribed accuracy.

(3.c)

(3.b)

(3.a)

(2.b)

(2.a)

(1.d)
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The auxiliary eigenvalue problem (i.e., System (3)), allows definition of an
integral transform pair for the function Θ(R,Z) as:

and

and with the use of a symmetric kernel, the normalization integral can be stated as:

The main problem, (Equation 1.a), can now be transformed, after appropriate
algebraic manipulations, involving use of eigenvalue problem, (Equation 3.a),
and all boundary and initial conditions to yield:

and

System (5) now has an explicit analytic solution given by:

and when operated on by the inversion formula, (Equation 4.b), yields the
following expression for the thermal response of the fluid within the
temperature field:

In the work here advanced, other parameters/quantities of practical relevance
are evaluation of the dimensionless bulk fluid temperature, Θb(Z) and the local
Nusselt number, Nu(Z), as they vary along the thermal entrance region of the
duct under the prescribed flow and boundary conditions. Based on their
universal definitions, the local bulk fluid temperature and Nusselt number, at
any measurement station within the thermal entrance region can, respectively,
be evaluated as:

(7)

(6)

(5.b)

(5.a)

(4.c)

(4.b)

(4.a)
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and

From (Equation 7), at the internal fluid-to-solid interface, (i.e. at the wall):

or

and after introducing Equations (8) and (10.b) into Equation (9), it can be shown
that[5]:

Thermally developed Nusselt numbers (theoretically)
Cases of steady fully developed turbulent flow in a circular duct with constant
wall surface temperature occur frequently, and hence it is very important to
evaluate limiting heat transfer coefficients and, in addition, to be fully aware of
the direct implications of constant wall surface temperature, as opposed to a
constant wall heat-flux boundary condition. In the past, an analysis for a
circular duct was executed for the constant wall surface temperature by
Sleicher and Tribus[21]. The momentum and heat transfer characteristics for
transitional and turbulent flows in the entrance region were predicted
by extending the laminar flow approach – through the adoption of an

(11)

(10.b)

(10.a)

(9)

(8)
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eddy-viscosity and turbulent Prandtl number concept. The resulting
eigenvalues and eigenfunctions were numerically determined and applied in the
evaluation of entrance region effects, as was the approach for laminar flow
situations. However, it was later shown[22] that such a procedure was not
generally accurate, although widely used, since the correction factor was
proven to be multi-variable dependent, with both the Reynolds and Prandtl
numbers having independent, but marked, influences.

In the novel theoretical approach advanced in this presentation, the
thermally developed Nusselt numbers, Nu∞, are evaluated as a function of the
temperature field, thereby being totally dependent on the computed
eigenquantities defining the thermal characteristics of the flowing fluid within
that region of the duct. At remote downstream positions far removed from the
very inlet, (i.e. as Z → ∞), and referring to the local Nusselt number expression
of (Equation 11), it can be shown after a certain degree of algebraic
manipulation that:

which is explained as follows. On close inspection of (Equation 11), it can be
inferred that for k ≥ 2, the quantity (µ2

k = µ2
k–1), will never be negative, and is

therefore representative of a continuously increasing positive value, since
succeeding eigenvalues are always greater that preceding eigenvalues (i.e. µk >
µk–1), and at large values of Z, (Equation 11) reduces to (Equation 12)[5].
Therefore, unlike other approaches cited in the literature – with their respective
limitations, it has be been shown by the novel approach here advanced that: in
steady forced convection with turbulent flow and constant surface wall
temperature, the limiting or thermally developed Nusselt numbers are
obtainable as the magnitude of the first eigenvalues squared – and are Reynolds
and Prandtl number dependent. A detailed description of the formulation on the
novel approach is provided in the work of Brown[5].

Empirical correlations
In order to complement the theoretical work here advanced, benchmark
analytical values of thermally developed Nusselt numbers had to be
compared with reliable experimental and/or empirical data[12-14], under
similar flow conditions, thereby verifying the benchmark nature associated
with the theoretical solutions. To accomplish such tasks, complementary
analyses were carried out with the use of proven reliable empirical
correlations, wherein a single multivariable empirical expression was
employed for evaluating the frictional effects as the fluid progresses through
the thermal entry region. With this approach, the residuals introduced by the
multivariable friction factor expression were transferred across the complete
solution domain entertained by the verification analyses, and as such, had
zero influence on both the predication accuracy of the novel technique and the
empirical values.

(12)
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Friction factor
In the definition of frictional effects associated with the flow phenomena within
the thermal entrance region of the circular duct, the empirical correlation
suggested by Filonenko[23] was employed throughout the analyses (both
theoretical and empirical). For steady, fully developed turbulent flow inside
smooth circular ducts with constant surface wall temperature, this correlation
was shown by Bhatii and Shah[3] to have exhibited excellent accord with the
combined Prandtl-Karman-Nikuradse (PKN) correlation, whenever its applied
within the suggested applicable Reynolds number range. Thus, in the present
work, the friction factor is stated as[23]:

and for the indicated Reynolds number range, it was shown[3] to produce
results with uncertainties within ± 1.8 per cent of the Prandtl-Karman-
Nikuradse expression. 

Thermally developed Nusselt numbers (empirically)
It is well known that a large number of correlations, both theoretical and
empirical, are available in the open literature[3] for evaluating the thermally
developed Nusselt numbers for cases of forced convection inside circular ducts
with turbulent flow and constant wall surface conditions. However, on the basis
of proven applicability range coupled with accuracy and reliability of
predictions, the combined Prandtl[12] Taylor[13] and Gnielinski[14] correlations
are selected for comparing their results with those from the novel theoretical
approach. The correlations are, respectively, expressed as follows; Prandtl[12]
Taylor[13] and Gnielinski[14]:

where (Equation 14) is based on a two-layer model (laminar sub-layer and
turbulent core), with uncertainties of +14.9 per cent and –11.1 per cent,
respectively, of the Gnielinski[14] correlation. The fully developed Nusselt
number correlation given by Gnielinski[14] is:

(15.a)

(14)

(13)
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and

where the first Gnielinski expression, (Equation 15.a), has been generally
selected as the common basis of comparison for most other correlations, and the
second, (Equation 15.b) shown to agree with the first, (Equation 15.a) within +4
per cent and –6 per cent accuracy, respectively[3].

Results and discussions
A novel approach, based on an extension of the generalized integral transform
technique has been formulated for obtaining hybrid analytic solutions of fully
developed steady forced convection inside the thermal entrance region of
circular ducts with turbulent flow and constant wall surface temperature
conditions. With this model, the auxiliary eigenvalue problem associated with
the thermal response of the fluid within the temperature field can be resolved
analytically with a user prescribed accuracy, providing benchmark results for
parameters of practical relevance in the accurate design and simulation of
critical heat transfer devices. Further, on the merit of its hybrid nature,
computational tasks were significantly reduced compared to other methods,
requiring 80 to 100 terms for convergence, in most cases, while in regions far
removed from the very inlet only few terms are required when heat transfer
parameters were being evaluated to an accuracy of five decimal places – noting
that the analyses are bounded by a global error control scheme in addition to
the convergence criteria of 10–5. 

In assessing the accuracy associated with predications from the novel
approach, its hybrid analytic solutions of thermally developed Nusselt numbers
are compared with results from three different empirical correlations over a
wide range of Reynolds numbers, as shown in Table I. An overall inspection of
Table I shows satisfactory agreement prevailing between analytically and
empirically evaluated thermally developed Nusselt numbers over the entire
Reynolds number range. In most cases, deviations are shown to be within 7.0
per cent, with maximum differences of 8.73 per cent and 9.58 per cent
respectively, appearing for the Gnielinski’s and Prandtl-Taylor’s correlations at
the lowest Reynolds number. As noted, however, in all the cited cases, the
difference diminishes with increasing Reynolds number and at the largest
Reynolds number, the predicated value of the novel approach and that of the
Gnielinski’s correlation are equivalent, while a difference of 6.93 per cent exists
between the analytic and the Prandtl-Taylor correlation. In addition, marked
variations are shown to be associated with low turbulent Reynolds numbers,
since the values are outside the suggested range of the turbulence model. In
general, however, the cited satisfactory agreements provide authenticity to the
analytical approach in accurately predicting the thermal response of the fluid

(15.b)
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within the temperature field for steady turbulent flow in circular ducts with
constant surface wall temperature.

In Figures 1 and 2 the theoretical solutions for the variations in local bulk
fluid temperature are illustrated as a function of the dimensionless streamwise
coordinate within the thermal entry region for a selected Reynolds number
range, covering low, intermediate and high turbulent flow regimes. As shown,
the local fluid bulk temperature takes on its maximum value at the inlet and
then decays exponentially with increasing distance along the duct. In each case,

Re tsNu∞
14Nu∞

12,13Nu∞ ∈ 14–ts ∈ 12,13–ts

6,000 21.53 19.65 19.18 8.73 9.58
7,000 23.94 22.41 21.65 6.39 6.83
8,000 26.29 25.05 24.04 4.72 4.95
9,000 28.57 27.58 26.38 3.47 3.59
10,000 30.80 30.03 28.66 2.50 2.56
20,000 51.27 51.77 49.42 0.98 0.97
50,000 103.48 105.08 101.55 1.55 1.52
100,000 178.73 180.24 175.10 0.84 0.84
200,000 311.81 311.43 301.92 0.12 0.12
500,000 658.88 649.78 620.00 1.38 1.40
1,000,000 1,143.85 1,143.85 1,069.74 0.00 6.93

Table I.
Nusselt numbers for

thermally developed steady
forced convection in

circular ducts for 
constant wall surface

temperature and
turbulent flow with
Pr = 0.71, Prt = 0.86

Figure 1.
Fluid bulk temperature
variation in the thermal

entry region of a circular
duct for constant wall

surface temperature and
turbulent flow with

Pr = 0.71 and 
3,000 ≤ Re ≤ 6,000
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the decaying rate of the fluid bulk temperature appears to be strongly
influenced by the Reynolds number; exhibiting increased slopes at larger
Reynolds numbers. In general, the fluid bulk temperature experiences sharp
decrease in the immediate neighbourhood of the inlet, and then tends to be
gradual until minimum values are attained at downstream locations far
removed from the inlet.

Figures 3 and 4 demonstrate the analytical results for the local Nusselt
number variations corresponding to the flow conditions illustrated in Figures 1
and 2. As a function of the dimensionless streamwise co-ordinate Z, the local
Nusselt number attains a maximum value at the inlet and then decreases
monotonically with increasing downstream distance. The rate of decrease is
observed to be extremely sharp in the immediate neighbourhood of the inlet,
but becomes increasingly more gradual as the curves tend to level-off and the
local Nusselt number approaches the thermally developed value, Nu∞ at an
extended downstream position, following which the value is invariant with
position. 

In Figures 3 and 4, the space separating adjacent pairs of curves appear to be
independent of axial position, except for regions in the immediate neighbour-
hood of the inlet. Therefore, if a functional relationship is chosen as g1(Z/D) for
the invariant regions, it can be inferred that g1(Z/D) is a constant. In such cases,
if the parallelism associated with the illustrative curves (i.e. Figures 3 and 4) can
generally be thought of as being indicative of the functional relationship Nu(Z)
= g1(Z/D) g2(Re) then, the function g2(Re) can readily be evaluated from the
thermally developed results and g1(Z/D) from new figures of Nu(Z) versus (Z/D)
being extensively pursued for various fluids and geometries.

Figure 2.
Fluid bulk temperature
variation in the thermal
entry region of a circular
duct for constant wall
surface temperature and
turbulent flow with
Pr = 0.71 and 
7,000 ≤ Re ≤ 10,000
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Figure 3.
Nusselt numbers in the
thermal entry region of

a circular duct for
constant wall surface

temperature and
turbulent flow with

Pr = 0.71 and 
3,000 ≤ Re ≤ 6,000

Figure 4.
Nusselt numbers in the
thermal entry region of

a circular duct for
constant wall surface

temperature and
turbulent flow with

Pr = 0.71 and 
7,000 ≤ Re ≤ 10,000
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Conclusion
A novel theoretical approach, incorporating ideas associated with the
generalized integral transform technique was developed for accurately
predicating hybrid analytic solutions of fully developed steady forced
convection in circular ducts with turbulent flow and constant wall surface
temperature. Explicit analytical solutions for the thermal response of the fluid
within the temperature field are reported systematically in terms of axial
variations in bulk temperature and Nusselt number, covering a wide turbulent
Reynolds number range. Further, it is shown that the thermally developed
Nusselt numbers are equivalent in magnitude to the first eigenvalue squared.
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